主页 > ufo >

揭秘数学三大危机的探究,剖析神奇的数学世界【

ufo 2023-12-06 19:38www.178767.comufo事件

奇事网文章要介绍“数学三大危机的探究,剖析神奇的数学世界【图文】”,内容是奇事网小编在网络上精心整理的,在这里与大家分享。

数字以及数学的出现在很早之前就已经有了,并且随着对数学认识的加强,数学的发展中能出现或多或少的一些问题,也会建立某些方面的权威,主要是数学家在探究数学的过程中肯定会发现一些既定的规律,随着对数学认识的加强,可能会发现某些规律会存在一定的错误,或者说并不是一个完善的理论,于是就会有一个新的理论去反驳原先的理论,并且原先的理论可能还是比较重要的理论,故而出现了数学三大危机的说法,数学三大危机的出现也表明了人类在探究数学的过程存在很多错误上的认识,本文就来为大家介绍数学三大危机的相关知识,让大家认识一下数学的神奇。

数学三大危机是什么

数学一大危机

希帕索斯(Hippasu,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;

数学二大危机

微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;

数学三大危机

罗素悖论S由一切不是自身元素的集合所组成,那S包含S吗?用通俗一点的话来说,小明有一天说“我正在撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!

数学三大危机详解

数学三大危机之第一次危机详解

毕达哥拉斯学派亦称“南意大利学派”,是一个集政治、学术、宗教三位于一体的组织。古希腊哲学家毕达哥拉斯所创立。毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,万物按照一定的数量比例而构成和谐的秩序;

由此他们提出了“美是和谐”的观点,认为音乐的和谐是由高低长短轻重不同的音调按照一定的数量上的比例组成,“音乐是对立因素的和谐的统一,把杂多导致统一,把不协调导致协调。”

这是古希腊艺术辩证法思想的萌芽,也包含着艺术中“寓整齐于变化”的普遍原则。,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。

后来历史证明,他在整个希腊几何学史也是一块绊脚石。由于人们试图寻找一种不使算术完全脱离几何学的解决办法,这就导致一种新型数的引进,那就是无理数。也正是由于无理数的引入,引发了第一次数学危机。

毕达哥拉斯学派在对数学的发现中,不断追求“美”的形式。他们认为日、月五星都是球形,浮悬在太空中,这是最完美的立体,而圆是最完美的平面图。就是曾被誉为“巧妙的比例”,并染上各种各样瑰丽诡秘色彩的“黄金分割”也是这个学派认识到的。

希帕索斯的发现导致了数学史上第一个无理数 的诞生。小小 的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。

实际上,这一伟大发现不对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上任何量,在任何精确度的范围内都可以表示成有理数。

这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的 的存在而推翻了!

这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。

数学三大危机之第二次危机详解

微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分诞生之后,数学迎来了一次空前繁荣的时期,对18世纪的数学产生了重要而深远的影响,牛顿和莱布尼茨的微积分都缺乏清晰的、严谨的逻辑基础,这在初创时期是不可避免的。原文地址http://.yi2./article/201606/13160.html

科学上的巨大需要战胜了逻辑上的顾忌。他们需要做的事情太多了,他们急于去攫取新的成果。基本问题只好先放一放,正如达朗贝尔所说的“向前进,你就会产生信心!”数学史的发展一再证明自由创造总是领先于形式化和逻辑基础。

于是在微积分的发展过程中,出现了这样的局面

一方面是微积分创立之后立即在科学技术上获得应用,从而迅速地发展;

另一方面是微积分学的理论在当时是不严密的,出现了越来越多的悖论和谬论。数学的发展又遇到了深刻的令人不安的危机。

例如,有时把无穷小量看作不为零的有限量而从等式两端消去,而有时却又令无穷小量为零而忽略不计。由于这些矛盾,引起了数学界的极大争论。

如当时爱尔兰主教、唯心主义哲学家贝克莱嘲笑“无穷小量”是“已死的幽灵”。贝克莱对牛顿导数的定义进行了批判。

驱动18世纪的微积分学不断向前发展的动力是物理学的需要,物理问题的表达一般都是用微分方程的形式。18世纪被称为数学史上的英雄世纪。

他们把微积分应用于天文学、力学、光学、热学等各个领域,并获得了丰硕的成果。在数学本身又发展出了多元微分学、多重积分学、微分方程、无穷级数的理论、变分法,大大地扩展了数学研究的范围。

其中最著名的要数最速降线问题即最快下降的曲线的问题。这个曾经的难题用变分法的理论可以轻而易举的解决。

数学三大危机之第三次危机详解

认识第三次危机之前先知道一个理论,叫做罗素悖论,罗素悖论设集合S是由一切不属于自身的集合所组成,即“S={x|x∉x}”。那么问题是S属于S是否成立?,若S属于S,则不符合x∉x,则S不属于S;,若S不属于S,则符合x∉x,S属于S。

公理化集合论的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。

而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展。于是,数学的基础被动摇了,这就是所谓的第三次数学危机。

危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;

另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。

1908年,策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔的改进后被称为ZF公理系统。

在该公理系统中,由于分类公理P(x)是x的一个性质,对任意已知集合A,存在一个集合B使得对所有元素x∈B当且仅当x∈A且P(x);{x∣x是一个集合}并不能在该系统中写成一个集合,由于它并不是任何已知集合的子集;并且通过该公理,存在集合A={x∣x是一个集合}在ZF系统中能被证明是矛盾的,罗素悖论在该系统中被避免了。

数学三大危机视频

奇事网网奇事网小编数学三大危机的出现表明了人类在探索数学的问题上还存在许许多多的没有被解开的难点,数学三大危机的出现也预示这数学的发展再朝向一个更好的方向发展,比如说第二次数学危机的出现,就是微积分发展最重要的一个环节。

Copyright © 2016-2025 www.178767.com 奇事网 版权所有 Power by